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1. Introduction

The phenomenological analysis of semi-leptonic and non-leptonic B-meson decays into light

mesons needs non-perturbative hadronic input. The theoretically simplest objects are the

heavy-to-light transition form factors. At large recoil energy (E ∼ mB/2) and to leading

power in the Λ/mB expansion, they fulfill a factorization theorem [1] which can be proven

using effective-field-theory methods [2, 3] (see also [4]):

〈M(E)|ψ̄ Γi b|B(v)〉 = CI
i (µ, 2E) ξM (2E,µ) + CII

i (µ, 2E)
αsCF

4π
∆FM (2E,µ) + . . . , (1.1)
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where M = P, V‖, V⊥. The factorization theorem contains a so-called “soft” (non-

factorizable) function ξM and a factorizable piece ∆FM which is determined by a con-

volution of a spectator-scattering kernel T and process-independent light-cone distribution

amplitudes (LCDAs) φ+
B(ω) and φM (u) for heavy and light mesons, respectively,

∆FM (2E,µ) = T (u, 2E,ω, µ) ⊗ φ+
B(ω, µ) ⊗ φM (u, µ) . (1.2)

Finally, the perturbative coefficient functions CI,II
i contain the radiative corrections from

short-distance quantum fluctuations at the scale µ ∼ mb.

The modelling of the soft form-factor terms ξM requires non-perturbative methods.

Because of the qualitatively different dynamics parametrized by the functions ξM and

∆FM , it is desirable to follow a non-perturbative approach where the two contributions

can clearly be separated from the very beginning of the calculation. In previous work [5, 6]

we have shown that ξM and ∆FM can be determined independently via sum rules de-

rived from correlation functions in soft-collinear effective theory (SCET [7, 8]), where the

light mesons are replaced by suitably chosen interpolating currents. Both, the correlation

function for ξM and for ∆FM involve the light-cone distribution amplitudes of the B-

meson. Radiative corrections to the correlation function can be systematically calculated

in perturbation theory, separating the dynamics at the intermediate (“hard-collinear”)

scale of order
√

mbΛQCD from the soft hadronic binding effects in the B-meson. It is to

be stressed that the correlation functions unambiguously factorize into perturbative short-

distance functions and process-independent LCDAs (the factorization to order αs accuracy

and neglecting 3-particle LCDAs will be verified explicitly below). In contrast, the sum

rules derived from these correlators introduce additional sensitivity to non-perturbative

parameters, which not necessarily needs to be process-independent and thus reflects some

irreducible theoretical uncertainty.

In our previous article we have concentrated on the B → π form factor. In this work

we extend and generalize the discussion to also include transitions to light vector mesons,

V = ρ,K∗, . . . We find it particularly useful to consider form factor ratios, where the

leading dependence on the hadronic input parameters related to the B-meson drops out to

some extent.

The paper is organized as follows: In section 2 we derive the SCET sum rules for the

B → V‖, V⊥ non factorizable form factors at O(αs). The sum rules for the corresponding

factorizable form factors are obtained in section 3. Numerical analyses are performed in

section 4, where also the case of B → P form factors is reconsidered. The last section is

devoted to conclusions. Some useful formulas are collected in the appendix.

2. SCET sum rule for non-factorizable form factor

In the following, we will use light-cone variables defined in terms of two light-like vectors

n2
+ = n2

− = 0 which are normalized as n+n− = 2, such that any vector is decomposed as

aµ = (n+a)
nµ
−

2
+ (n−a)

nµ
+

2
+ aµ

⊥ . (2.1)
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We consider a reference frame where the B-meson velocity vector satisfies v⊥ = 0 and

n+v = n−v = 1, and the final-state momentum p′ is purely longitudinal, p′⊥ = 0. In

this frame the two independent kinematic variables appearing in the SCET correlation

functions (see below) are taken as

(n+p
′) ≃ 2E′ = O(mb) , 0 > (n−p

′) = O(Λ) . (2.2)

The dispersive analysis will be performed with respect to (n−p
′) for fixed values of (n+p

′).

In SCET the non-factorizable form factors for transitions between a B meson and a

light vector meson are defined in terms of matrix elements of the two current operators [2]

J
‖
0 = ξ̄hcWhc (−γ5)Y

†
s hv , (2.3)

Jν⊥
0 = ξ̄hcWhc (γν⊥)Y †

s hv , (2.4)

where ξhc is the “good” light-cone component of the light-quark spinor with n/−ξhc = 0, and

hv is the usual HQET field. The hard-collinear and soft Wilson lines, Whc and Y †
s , appear to

render the form-factor definitions manifestly gauge invariant in SCET. The normalization

conventions for the corresponding two form factors ξ‖ and ξ⊥ are as in [1]

〈V (p′, ε)|J‖
0 |B̄(v)〉 =

(n+ε
∗)

2
(n+p

′) ξ‖(n+p
′) , (2.5)

〈V (p′, ε)|Jν⊥
0 |B̄(v)〉 =

i

2
(n+p

′) ξ⊥(n+p
′) ǫν⊥κ⊥στε∗κ⊥

n−τn+σ (2.6)

where ǫ0123 = +1.

The SCET sum rules are derived from a dispersive analysis of the correlation functions

Π‖(n−p
′) = i

∫

d4x eip
′x 〈0|T [J

‖
V (x)J

‖
0 (0)]|B(v)〉 , (2.7)

1

2
ǫµ⊥ν⊥στ n+σ n−τ Π⊥(n−p

′) = i

∫

d4x eip
′x 〈0|T [Jµ⊥

V (x)Jν⊥
0 (0)]|B(v)〉 , (2.8)

where the longitudinal and transverse polarization-state of the light vector meson is re-

placed by the interpolating current

J
‖
V (x) = −i ξ̄hc(x)n/+ ξhc(x) − i

(

ξ̄hcWhc(x)n/+ Y
†
s qs(x) + h.c.

)

, (2.9)

and

iJµ⊥
V (x) = ξ̄hc(x) in/+γ

µ⊥ ξhc(x) +
(

ξ̄hcWhc(x) in/+γ
µ⊥ Y †

s qs(x) + h.c.
)

, (2.10)

respectively. Here we denoted soft quark fields in SCET as qs. Notice that soft-collinear

interactions require a multi-pole expansion of soft fields [8] which is always understood

implicitly. The matrix element of the interpolating vector-meson currents are given as

〈0|J‖
V |V (p′, ε)〉 = mV (n+ε) f

‖
V , (2.11)

〈0|iJµ⊥
V |V (p′, ε)〉 = (n+p

′) εµ⊥ f⊥V (µ) . (2.12)
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The dispersion relation for the above correlation functions, after Borel transform with

respect to the variable n−p
′, reads

B̂
[

Π‖,⊥

]

(ωM ) =

∞
∫

0

dω′ 1

ωM
e−ω′/ωM

1

π
Im
[

Π‖,⊥(ω′)
]

, (2.13)

where ωM ≡ M2/(n+p
′) is the Borel parameter. The hadronic representation of the same

correlation function reads

ΠHAD
‖,⊥ (n−p

′) = Π‖,⊥(n−p
′)
∣

∣

∣

res.
+ Π‖,⊥(n−p

′)
∣

∣

∣

cont.
, (2.14)

where the first term represents the contribution of the V meson, while the second takes into

account the role of higher states and continuum above an effective threshold ωs ≡ s0/(n+p
′).

Assuming quark-hadron duality implies Π‖,⊥(n−p
′) = ΠHAD

‖,⊥ (n−p
′). For the longitudinal

part we obtain the resonance contribution

Π‖(n−p
′)
∣

∣

∣

res.
=

〈0|J‖
V |V (p′, ε)〉〈V (p′, ε)|J‖

0 |B(v)〉
m2

V − p′2
=

n+p
′

2mV

(n+p
′)2 ξ‖(n+p

′) f
‖
V

m2
V − p′2

. (2.15)

Apart from an overall factor (n+p
′)/2mV = EV /mV this has the same form as the expres-

sion for B → π if one replaces (fπ, ξπ) → (f
‖
V , ξ

‖
V ). However, now we should not neglect

the vector-meson mass in the hadronic side of the sum rule. As a consequence, the Borel

transform of the resonance contribution reads

B̂
[

Π‖

]

(ωM )
∣

∣

∣

res.
=
n+p

′

2mV
exp

[

− m2
V

(n+p′)ωM

]

(n+p
′) ξ‖(n+p

′) f
‖
V

ωM
. (2.16)

Modelling the continuum by the perturbative result and subtracting it on both sides

of (2.14), we obtain the sum rule

n+p
′

2mV
ξ‖(n+p

′) =
1

f
‖
V (n+p′)

exp

[

m2
V

(n+p′)ωM

]

ωs
∫

0

dω′ e−ω′/ωM
1

π
Im[Π‖(ω

′)] . (2.17)

Analogously, the sum rule for the transverse form factor follows as

ξ⊥(n+p
′) =

1

f⊥V (n+p′)
exp

[

m2
V

(n+p′)ωM

]

ωs
∫

0

dω′ e−ω′/ωM
1

π
Im[Π⊥(ω′)] . (2.18)

2.1 Tree-level result

At leading power, the tree-level result for the correlation function involves one hard-

collinear quark propagator, which reads

Shc
F =

i

n−p′ − ω + iη

n/−
2
, (2.19)

where ω = n−k, and kµ is the momentum of the soft light quark that will end up as

the spectator quark in the B meson. The remaining matrix element defines light-cone
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distribution amplitudes for the B meson in HQET [9, 1] (for the definition, see appendix B).

This leads to

Π‖(n−p
′) = Π⊥(n−p

′) = fBmB

∞
∫

0

dω
φ−B(ω)

ω − n−p′ − iη
(2.20)

which is identical to the analogous result calculated for the B → π case [5]. Inserting

the imaginary part into the sum rules (2.17), (2.18), the tree-level result for the soft form

factors follows as

ξ̂‖(n+p
′) ≡ n+p

′

2mV
ξ‖(n+p

′)

=
fBmB

f
‖
V (n+p′)

exp

[

m2
V

(n+p′)ωM

]

ωs
∫

0

dω′ e−ω′/ωM φ−B(ω′) (tree level) ,

(2.21)

and

ξ⊥(n+p
′) =

fBmB

f⊥V (n+p′)
exp

[

m2
V

(n+p′)ωM

]

ωs
∫

0

dω′ e−ω′/ωM φ−B(ω′) (tree level) .

(2.22)

Notice that the suppression of the longitudinal form factor ξ‖ by mV /(n+p
′) compared to

ξ⊥ is expected on general grounds [10, 1].

2.2 Radiative corrections from hard-collinear loops

In SCET short-distance radiative corrections to the correlation functions (2.7), (2.8) are

represented by hard-collinear loops, as shown in figure 1 for the leading order in αs (1-loop

contributions from three-particle distribution amplitudes in the B-meson are neglected in

this work). The diagrams denoted by (a1-a4) and (b1-b2) form gauge-invariant subsets,

such that the result for either of the correlation functions can be written as

Π‖,⊥(ω′, µ) = fB(µ)mB

∞
∫

0

dω

ω − ω′ − iη
φ−B(ω, µ)

{

1 +
αsCF

4π
((a1-a4) + (b1-b2))

}

‖,⊥

.

(2.23)

The corrections from diagrams (a1-a4) are identical for pseudoscalar, longitudinal and

transverse vector mesons and read [5]

(a1-a4) =
4

ǫ2
+

3 + 4L(µ)

ǫ
+ L(µ) (3 + 2L(µ)) + 7 − π2

3
, (2.24)

where we have used dimensional regularization in D = 4−2ǫ, and defined the abbreviation

L(µ) = ln

[

− µ2

(n+p′)(ω′ − ω + iη)

]

. (2.25)
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(a1)
J

J0

s

s

hc

(a2)
J

J0

s

s

hc

(a3)
J

J0

s

s
hc

(a4)
J

J0

s

s
hc

(b1)

J

J0

s

s

hc

L(2)
ξq

(b2)

J

J0

s

s

hc

L(2)
ξq

‖,⊥‖,⊥

‖,⊥‖,⊥

‖,⊥‖,⊥

Figure 1: Diagrams contributing to the sum rule for ξ‖,⊥ to order αs with hard-collinear loops and

no external soft gluons. Diagrams (a2-a4) and (b2) vanish in light-cone gauge n+Ahc = 0. Diagram

(a3) vanishes both in light-cone and in Feynman gauge.

Notice that the diagrams (a1-a4) also determine the perturbative corrections to the jet

function in inclusive b→ u decays [11, 12] (see also appendix).

For the diagrams (b1-b2) we have to consider soft-collinear vertices from the sub-

leading SCETI Lagrangian L(2)
ξq , see [8]. Alternatively, one can single out the hard-collinear

integration region from the corresponding QCD diagrams and use the momentum-space

projector for the B-meson distribution amplitude, see (B.7) in the appendix. In either case

we obtain

(b1 − b2)‖ = − 2

ǫ2
− 2L1 + 2L(µ) + 3

ǫ

− L2
1 −

ω + 2ω′

ω
L1 − L2(µ) − (2L1 + 3)L(µ) +

π2

6
− 8 , (2.26)

where we have defined

L1 = ln

[

1 − ω

ω′ + iη

]

. (2.27)
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Again, the expression for (b1 − b2)‖ coincides with the B → π case.1 For the transverse

polarization we obtain

(b1-b2)⊥ = (b1-b2)‖ −
1

ǫ
− L(µ) − L1 . (2.28)

The extra contribution with 1/ǫ is related to the anomalous dimension of the tensor cur-

rent (2.10), and the corresponding extra µ dependence cancels that of f⊥V (µ),

∂f⊥V (µ)

∂ lnµ2
=
αsCF

4π
f⊥V (µ) + . . . (2.29)

2.2.1 Cancellation of factorization-scale dependence

The physical form factors defined by (1.1) have to be independent of the factorization

scale µ, which have been introduced to separate the momentum regions contributing to

the B →M transition. In our previous paper [5] we have already verified that the double-

logarithmic dependence on µ, related to the universal cusp anomalous dimension, drops

out when combining the scale-dependence of the hard matching coefficients between QCD

and SCET [7],

d

d lnµ
Ci(µ) = −αsCF

4π

(

Γ(1)
cusp ln

µ

mb
+ 5

)

Ci(µ) + . . . (2.30)

with Γ
(1)
cusp = 4, and the explicit scale dependence of the renormalized SCET correlation

function in (2.23),

d

d lnµ
Π‖(ω

′, µ) = −αsCF

4π
fB(µ)mB

∞
∫

0

dω

ω − ω′

∫ ∞

0
dω̃ γ

(1)
− (ω, ω̃, µ)φ−B(ω̃, µ) (2.31)

+
αsCF

4π
fB(µ)mB

∞
∫

0

dω

ω − ω′

(

Γ(1)
cusp L(µ) − Γ(1)

cusp L1 + 3
)

φ−B(ω, µ) + . . .

Here we have only quoted the result for Π‖, since Π⊥ simply differs by a single log related

to the anomalous dimension of the decay constant f⊥(µ) (see above). Neglecting possible

3-particle contributions, the scale dependence of the B-meson LCDA in HQET is described

by the anomalous dimension γ−,

d

d lnµ
φ−B(ω;µ) = − αsCF

4π

∫ ∞

0
dω̃ γ

(1)
− (ω, ω̃;µ) φ−B(ω̃;µ) + . . . (2.32)

which gives rise to the first line in (2.31). The second line arises from the explicit scale-

dependence induced by the NLO hard-collinear αs corrections to the correlator, where we

also took into account the anomalous dimension of the B-meson decay constant in HQET,

dfB/d lnµ = 3 αsCF

4π + . . .

1We spotted a calculational error in our original result for the B → π correlator in [5], which affects the

single-logarithmic terms. The corrected formulas and numerics will be discussed below.
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While the anomalous dimension for the LCDA φ+
B(ω, µ) has been known for some

time [13], the anomalous dimension for the LCDA φ−B(ω, µ) has been calculated only re-

cently [14] with the result

γ
(1)
− (ω, ω̃;µ) =

(

Γ(1)
cusp ln

µ

ω
− 2

)

δ(ω − ω̃) − Γ(1)
cusp

θ(ω̃ − ω)

ω̃

− Γ(1)
cusp ω

[

θ(ω̃ − ω)

ω̃(ω̃ − ω)

]

+

− Γ(1)
cusp ω

[

θ(ω − ω̃)

ω(ω − ω̃)

]

+

. (2.33)

This enables us to also verify the perturbative cancellation of the single logarithmic terms.

For that purpose, we have to insert the convolution (2.32) into the tree-level term in (2.23).

Using integration-by-parts, we find

−
∫ ∞

0

dω

ω − ω′

∫ ∞

0
dω̃ γ

(1)
− (ω, ω̃, µ)φ−B(ω̃, µ)

=

∫ ∞

0

dω

ω − ω′

(

−Γ(1)
cusp ln

µ

ω − ω′
+ Γ(1)

cusp L1 + 2

)

φ−B(ω, µ) . (2.34)

Inserting (2.34) into (2.31) and combining with (2.30), we find indeed complete cancellation

of all µ-dependent terms, which proofs the factorization of the SCET correlator to order

αs accuracy (in the absence of 3-particle LCDAs).

2.2.2 Contribution to the sum rule

In [5] we have calculated the imaginary part of the correlation function using the approx-

imation φ−B(ω) ≃ φ−B(0) which is valid for ωM,s ≪ Λ. Using the relations provided in the

appendix, it is possible to derive the exact expressions which, inserted in eq. (2.13), give

the final result for the Borel-transformed and continuum-subtracted correlator:

B̂[Π‖,⊥](ωM ) − cont. =
fBmB

ωM

ωs
∫

0

dω′ e−ω′/ωM

{

−
∫ ∞

ω′

dω f‖,⊥(ω, ω′, µ)
dφ−B(ω, µ)

dω

+

∫ ω′

0
dω

[

g‖,⊥(ω, ω′, µ)

ω − ω′

]

+

φ−B(ω, µ)

}

(2.35)

where we introduced the functions f‖,⊥ = 1 + O(αs) and g‖,⊥ = O(αs):

f‖(ω, ω
′, µ) = 1 +

αsCF

4π

(

L2
0 + (1 + 2L0) ln

ω′

ω
− (3 + 2L0) ln

[

1 − ω′

ω

]

− 1 +
π2

6

)

(2.36)

f⊥(ω, ω′, µ) = 1 +
αsCF

4π

(

L2
0 − L0 + (2 + 2L0) ln

ω′

ω
− (4 + 2L0) ln

[

1 − ω′

ω

]

− 1 +
π2

6

)

(2.37)

and

g‖(ω, ω
′, µ) = g⊥(ω, ω′, µ) +

αsCF

4π
=
αsCF

4π
(2L0 − 4L1) , (2.38)

– 8 –
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where

L0 = ln

[

µ2

(n+p′)ω′

]

. (2.39)

The final sum rules at O(αs) are obtained by replacing φ−B(ω′) in (2.21), (2.22) by the curly

brackets in (2.35),

φ−B(ω′) → φeff
‖,⊥(ω′, n+p

′, µ) ≡
{

−
∫ ∞

ω′

dω f‖,⊥(ω, ω′, µ)
dφ−B(ω, µ)

dω

+

∫ ω′

0
dω

[

g‖,⊥(ω, ω′, µ)

ω − ω′

]

+

φ−B(ω, µ)

}

(2.40)

Notice that the integration variable in the dispersion integral is restricted to values

ω′ ≤ ωs = s0/(n+p
′), and therefore the natural choice for the scale µ in the function L0

is soft, µ2
soft ∼ s0 = O(1 GeV2) (i.e. independent of the heavy-quark mass). On the other

hand, the logarithm ln[ω′/ω] in the function f(ω, ω′, µ) is evaluated for values of ω ≥ ω′,

and therefore the natural scale for ω is set by the B-meson LCDA, ω ∼ ω0 ≃ 0.5 GeV.

The identified large logarithms, arising in the formal limit µ2 ∼ s0 ≪ ω0(n+p
′), stem

from the spectator diagrams (b1,b2) in figure 1 and have the same origin as the endpoint

singularities appearing in the QCD factorization approach.2 The appearance of different

scales in φeff thus indicates that the resummation of large logarithms in the heavy-quark

limit for the sum rule is not complete.

A formal solution of this problem within the sum-rule approach would require to con-

sider two-loop corrections to the correlator and to better understand the evolution equa-

tions of the B-meson LCDA φ−B(ω) in the presence of 3-particle LCDAs, which goes beyond

the scope of this work. Usually, one takes a more pragmatic point of view and ignores the

formal logarithmic enhancement of the perturbative coefficients, since numerically the ef-

fect does not appear to be very large. However, one should be aware of the fact that

the presence of these non-factorizable logarithms prevents us from performing the very

heavy-quark limit in the final sum rule for the soft form factor, see also section 4.2.2 below.

3. SCET sum rule for QCD-factorizable contributions

In our previous paper [5], we have shown that at leading-order in αs our sum-rule approach

reproduces the result for the factorizable form-factor contribution from hard-collinear spec-

tator scattering as derived in [2, 1] (spectator-scattering corrections to heavy-to-light form

factors at NLO in QCD factorization are also known by now [16 – 18]). We extend the

results derived in [5] for B → π transition to the case of B decays to a light vector meson.

2A similar situation arises for heavy-to-light form factors with non-relativistic bound states, as discussed

in [15]. Here, the finite (constituent) quark masses provide an intrinsic infrared regulator, such that the

form factors are well-defined in fixed-order perturbation theory. Still, one encounters large logarithms which

cannot be attributed to the evolution of mesonic light-cone wave function or hard interaction kernels.
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Figure 2: Factorizable contribution to heavy-to-light form factors in the SCET sum rule approach.

In case of the pion the corrections to the symmetry relations are derived by an inde-

pendent sum rule starting with the correlation function

Π1
π(p′) = i

∫

d4x eip
′x 〈0|T [Jπ(x)Jπ

1 (0)]|B(pB)〉 , (3.1)

where

Jπ
1 ≡ ξ̄hc g A/

⊥
hc hv . (3.2)

The analogous function for the ρ with longitudinal polarization is

Π1
‖(p

′) = i

∫

d4x eip
′x 〈0|T [J‖

ρ (x)J
‖
1 (0)]|B(v)〉 , (3.3)

with the factorizable current3

J
‖
1 ≡ ξ̄hc g A/

⊥
hc γ5hv . (3.4)

In the case of ρ with transverse polarization there are two possible currents having a

nonvanishing matrix element between the B meson and a transverse ρ state, which are

Jν⊥
1,1 ≡ ξ̄hc g A

ν⊥
hc hv , J

ν⊥
1,5 ≡ ξ̄hc g A

ν⊥
hc γ5hv . (3.5)

As a consequence, we consider two different correlation functions:

Π1,1µ⊥ν⊥
⊥ = i

∫

d4x eip
′x 〈0|T [Jµ⊥

ρ (x)Jν⊥
1,1(0)]|B(v)〉 = (−1)

1

2
ǫνµ
⊥ Π1,1

⊥ (p′) (3.6)

with ǫνµ
⊥ ≡ ǫν⊥µ⊥στ n−τ vσ, or alternatively

Π1,5µ⊥ν⊥
⊥ = i

∫

d4x eip
′x 〈0|T [Jµ⊥

ρ (x)Jν⊥
1,5(0)]|B(v)〉 = (−i)1

2
gµν
⊥ Π1,5

⊥ (p′) . (3.7)

The leading contributions to those correlation functions are given by the diagram in fig-

ure 2 which involves the insertion of one interaction vertex from the order-λ soft-collinear

Lagrangian

L(1)
ξq = ξ̄hc gsA/hc,⊥ qs + h.c. .

3Note that this current could be in principle further reduced to J
‖
1 ≡ iǫµσ

⊥ ξ̄hc g A⊥
hc µ γ⊥

σ hv .
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As in the pion case, the resulting hard-collinear loop integrals are UV- and IR-finite

and all the scalar functions turn out to be equal:

Π1(p′) ≡ Π1
π(p′) = Π1

‖(p
′) = Π1,1

⊥ (p′) = Π1,5
⊥ (p′) . (3.8)

The calculation yields

Π1(p′) = −αsCF

4π
(n+p

′)

∫ ∞

0
dω

fBmB φ
+
B(ω)

ω
ln

[

1 − ω

n−p′ + iη

]

, (3.9)

the imaginary part of which reads as

1

π
Im[Π1(ω′)] = −αsCF

4π
(n+p

′)

∫ ∞

0
dω

fBmB φ
+
B(ω)

ω
θ[ω − ω′] . (3.10)

Inserting this into the dispersion relation analogous to the one of the tree-level sum rule

Π1(p′) =
1

π

∫ ∞

0
dω′ Im[Π1(ω

′)]

ω′ − n−p′ − iη
, (3.11)

and performing the Borel transformation and subtracting the continuum contribution, we

obtain

B̂
[

Π1
]

(ωM )
∣

∣

∣

res.
= −αsCF

4π
(n+p

′)

∫ ∞

0
dω

fBmB φ
+
B(ω)

ω
(

1 − e−ωs/ωM − θ(ωs − ω)
(

e−ω/ωM − e−ωs/ωM

))

. (3.12)

Let us first reconsider the pion case. The hadronic expression for the contribution of the

lowest lying resonance (the pion) reads in this case

Π1
π(p′)

∣

∣

∣

res.
=

〈0|Jπ|π(p′)〉〈π(p′)|Jπ
1 |B(pB)〉

m2
π − p′2

=
(n+p

′) fπ 〈π(p′)|Jπ
1 |B(pB)〉

m2
π − p′2

. (3.13)

Thus, its Borel transform is given by

B̂
[

Π1
π

]

(ωM )
∣

∣

∣

res.
=
fπ〈π|Jπ

1 |B〉
ωM

e−m2
π/(n+p′ωM ) . (3.14)

Equating the two expressions leads to the sum rule for the factorizable contribution in the

pion case which reduces to the result derived in [5] for mπ = 0:

〈π|Jπ
1 |B〉 = −αsCF

4π

(n+p
′)fBmBωM

fπ
em

2
π/(n+p′ωM ) (3.15)

×
∫ ∞

0
dω

φ+
B(ω)

ω

(

1 − e−ωs/ωM − θ(ωs − ω)
(

e−ω/ωM − e−ωs/ωM

))

.

In previous work [1], the factorizable contribution was expressed in terms of the quan-

tities ∆Fπ,∆F‖, and ∆F⊥. As was explicitly shown in the appendix of [5], one can identify

the matrix element corresponding to the factorizable contribution as follows

〈π|Jπ
1 |B〉 =

αsCF

4π
∆Fπ

(−m2
B)

2
. (3.16)
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Along the same lines, one derives the identifications of the quantities ∆F‖ and ∆F⊥ with

the matrix elements of the factorizable currents defined above:

〈π|J‖
1 |B〉 =

αsCF

4π
∆F‖

(−m2
B)

4
n+ǫ

∗ mρ

E
(3.17)

〈π|Jν⊥
1,1 |B〉 =

αsCF

4π
∆F⊥

(−im2
B)

4
ǫ∗κ⊥ ǫ

νκ
⊥ (3.18)

〈π|Jν⊥
1,5 |B〉 =

αsCF

4π
∆F⊥

(m2
B)

4
ǫ∗ν⊥ . (3.19)

Then the hadronic side of the sum rule can be directly expressed in terms of the ∆FX :

Using again |n+ǫ
∗|2 = (n+p

′)2/(mρ)
2 we get

B̂
[

Π1
‖

]

(ωM )
∣

∣

∣

res.
= B̂

[

f
‖
ρn+p

′

m2
ρ − p′2

(−m2
B)

2

αsCF

4π
∆F‖

]

(3.20)

=
f
‖
ρ

ωM
e−m2

ρ/(n+p′ωM ) (−m2
B)

2

αsCF

4π
∆F‖ , (3.21)

and using ǫ∗µ⊥ǫ∗ν⊥ = −gµν
⊥ , we get for the scalar functions in the transverse case,

B̂
[

Π1,1
]

(ωM )
∣

∣

∣

res.
and B̂

[

Π1,5
]

(ωM )
∣

∣

∣

res.
, the same result as if we replace f

‖
ρ and ∆F‖ by

f⊥ρ and ∆F⊥ respectively.

Equating the hadronic and SCET expressions in the various cases we end up with the

following sum rule for the quantities ∆FX where X = π, ρ‖, ρ⊥:

∆FX(µ, n+p
′) =

2fBωM (n+p
′)

mBfX
em

2
X

/(n+p′ωM ) (3.22)

×
∫ ∞

0

dω

ω
φ+

B(ω, µ)
(

1 − e−ωs/ωM θ(ω − ωs) − e−ω/ωM θ(ωs − ω)
)

(with ωM and ωs depending on the considered meson X).

This result can now be compared with QCD factorization [2, 1]. If we insert the

leading-order sum rule for the decay constants

4π2f2
X ≃ M2 em

2
X

/M2
(

1 − e−s0/M2
)

, (3.23)

where M2 ≡ ωM (n+p
′) and s0 ≡ ωs (n+p

′), we can write the above result as

∆FX(µ, n+p
′) =

8π2fBfX

mB

∫ ∞

0

dω

ω
φ+

B(ω, µ) × (3.24)

×
1 − e−

s0
M2 θ

(

ω − s0

n+p′

)

− e−ωn+p′/M2

θ
(

s0

n+p′ − ω
)

1 − e−
s0

M2

.

Notice that, in contrast to the case for the non-factorizable form factor ξM , the limit

s0 ≪ ω n+p
′ now does exist. This implies that the soft dynamics related to the B-meson

constituents decouples from the dynamics related to the spectrum of the interpolating

current. Therefore, it is indeed justified to identify the sum rule parameters in the otherwise
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independent sum rules for ∆FX and the corresponding decay constant fX . Not surprisingly,

in this limit the above formula (3.24) reduces to the prediction from QCD factorization,

with — at this order — the asymptotic form for the light meson LCDAs φX(u),

∆FX(µ)
∣

∣

∣

QCDF,asympt.
=

8π2fBfX

mB

∫ ∞

0

dω

ω
φ+

B(ω, µ) . (3.25)

4. Numerical predictions for form factors

4.1 Hadronic input parameters

The result for the soft form factors from the SCET sum rules depends on the following

hadronic input parameters:

• The B-meson distribution amplitude fB φ
−
B(ω, µ): In the following, we will relate

1/ω0 = φ−B(0) to λB =
[

∫ ∞

0
dω

φ+(ω)

ω

]−1
via the Wandzura-Wilczek approxima-

tion [1] at the low scale µ = 1GeV. We take the values which have been obtained

from a recent moment analysis in [19]

ω0(1 GeV) = (0.48 ± 0.05) GeV .

(The value is consistent with the sum-rule result from [20].) For the shape of φ−B(ω),

we adopt the simple parametrization

φ−B(ω) =
1

ω0
e−ω/ω0 , (4.1)

see, however, also the discussion in section 4.5.

• The B-meson decay constant is taken as fB(mb) = (180±30) MeV which corresponds

to fB(1 GeV) ≃ (150 ± 30) MeV.

• The threshold parameter ωs = s0/(n+p
′): The next vector-meson resonance above

the ρ meson is the ρ(1450), and therefore we may expect ωs ∼ 0.4 GeV at (n+p
′) =

mB. We will take ωs = {0.35, 0.4, 0.45} GeV as our default range for longitudinal

ρ-mesons.4

In case of the correlation function Π⊥ for transversely polarized ρ mesons, also the

axial-vector resonances may contribute, starting with b1(1235). As a consequence,

the threshold parameter in our sum rule for ξ⊥ is expected to be significantly smaller

than in the longitudinal case (see, for instance, the discussion in [21]). Therefore,

we consider the lower threshold values, ωs = {0.20, 0.25, 0.30} GeV for transverse

ρ-mesons.

For completeness, we will also reconsider the soft B → π form factor, for which we

will take ωs = {0.15, 0.20, 0.25} GeV.

4In the following, all values assigned to the sum-rule parameters ωs and ωM refer to the maximal

recoil point (n+p′) = mb. However, when (n+p′) or mQ 6= mb are varied, these parameters are re-scaled

accordingly.

– 13 –



J
H
E
P
0
2
(
2
0
0
8
)
0
3
1

• The Borel parameter ωM : Reasonable values of ωM should be estimated from the

sum rule itself. As it turns out, the prediction for the soft form factors approximately

grows logarithmically with ωM . Requiring that the sum rule is sufficiently stable

against variations of ωM thus determines a lower acceptable value for ωM . In practice,

we consider the normalized logarithmic derivative

D =
ωM

ξ‖,⊥,π

∂ ξ‖,⊥,π

∂ωM
(4.2)

and require |D| < 25% (however, we generally do not consider values of ωM below

m2
ρ/mb ≃ 0.1 GeV). As a further constraint, we impose that the continuum contribu-

tion (ω′ > ωs) is not too large, and require that

R =

ωs
∫

0

dω′ e−ω′/ωM φeff(ω′)

∞
∫

0

dω′ e−ω′/ωM φeff(ω′)

(4.3)

is larger than 50%.

• For the meson decay constants5 we take f
‖
ρ = 205 MeV, and f⊥ρ (µ = 1 GeV) =

160 MeV [21].

4.2 Soft form factor for longitudinal vector mesons

Figure 3(a) shows the dependence of the soft form factor ξ̂‖ at n+p
′ = mB and µ =

1.0 GeV as a function of the Borel parameter for three different values of the threshold

parameters. Our constraints R‖ > 50% and D < 25% are fulfilled for a rather large range

of Borel parameter values, 0.1 GeV < ωM < 3.35 GeV , and we take the geometric mean

ωM = 0.6 GeV as our central value. Taking into account the variation of the various input

parameters, we obtain the estimate

ξ̂‖(n+p
′ = mB , µ = 1.0 GeV) = 0.33+0.02

−0.02|ωs

+0.03
−0.06|ωM

+0.03
−0.02|ω0

± 0.05|fB
. (4.4)

Adding errors in quadrature amounts to ξ̂‖(n+p
′ = mB, µ = 1.0 GeV) = 0.33+0.07

−0.09, i.e. in

total a ∼ 25% uncertainty with the largest contribution coming from the Borel parameter

and the decay constant. For comparison, the tree level result for the same input parameters

would give ξ̂‖ = 0.38, illustrating the numerical significance of the αs corrections. Within

the rather large uncertainties, our value is compatible with the values obtained from tradi-

tional sum rules [22, 23]. (For instance, the phenomenological analysis in [24] (see table 2

therein) infers ξ̂‖(mB , 1.5 GeV) = 0.37 ± 0.06.)

In principle, one can decrease the sensitivity on the sum rule parameters by dividing

the sum rule for ξ‖ by the leading-order sum rule for the decay constant fρ,

4π2 f2
ρ e

−m2
ρ/M2 ≃

∫ s0

0
ds e−s/M2

,

5In the following, we do not quote the uncertainty w.r.t. the decay constant f⊥
ρ which amounts to about

5-10% and would propagate linearly into the form factor sum rule.
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Figure 3: (a) The soft form factor ξ̂‖ at n+p
′ = mB and µ = 1.0GeV as a function of the Borel

parameter for three different values of the threshold parameters (solid line: ωs = 0.4GeV, short-

dashed line: ωs = 0.45GeV, long-dashed line: ωs = 0.35GeV). (b) The same quantity using the

modified sum rule (4.5).

where, for simplicity, we have not included αs corrections and non-perturbative corrections

from quark and gluon condenstates, which are suppressed by powers of 1/M2. If we assume

that the parameters ωM = M2/(n+p
′) and ωs = s0/(n+p

′) in the two sum rules can be

identified, we obtain a modified sum rule

ξ̂‖(n+p
′, µ) ≃

4π2fρfBmB

ωs
∫

0

dω′ e−ω′/ωM φeff
‖ (ω′, n+p

′, µ)

(n+p′)2
ωs
∫

0

dω′ e−ω′/ωM

. (4.5)

Numerically, the modified sum rule would result in the estimate

ξ̂‖(n+p
′ = mB, µ = 1.0 GeV) = 0.29 ± 0.01|ωs

+0.00
−0.01|ωM

± 0.02|ω0
± 0.05|fB

± (?)syst. .

The result is plotted in figure 3(b). It is to be stressed, however, that the very fact that the

soft and collinear dynamics in ξ‖ do not factorize in QCD also implies that the sum rule

parameters for the B → ρ form factor and the ρ-meson decay constant are not trivially

correlated, and the above numerical value is only shown for illustration. The reduction

of the ωM dependence in (4.5) is probably compensated by an increased systematic error

(indicated by the question mark) which is hard to estimate reliably. Nevertheless, we will

find the modified sum rules useful in the context of form factor ratios (see section 4.6.1),

where one could argue that the systematic error from correlating parameters in different

sum rules and neglecting higher-order corrections drops out to some extent.

4.2.1 Energy dependence

We may also study the energy dependence of the soft form factor, which is of phenomenolog-

ical importance if one wants to interpolate between lattice-theory results at intermediate

values of q2 and sum-rule results for the large-recoil limit at q2 = 0 (for a comprehen-

sive discussion, see e.g. [25]). The normalized result for the energy dependence is shown in
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Figure 4: (a) Energy dependence of the soft form factor ξ̂‖(n+p
′)/ξ̂‖(mB). The grey band illus-

trates the range between a pure 1/(n+p
′)2 and a pure 1/(n+p

′) behaviour. (b) The mQ dependence

of the soft form factor R‖(mQ), see (4.6), as a function of 1/mQ. The solid line denotes the NLO

result, the dashed line the LO result.

figure 4(a), where we have also shown a pure 1/(n+p
′) and 1/(n+p

′)2 behaviour for compar-

ison. Here we considered the sum rule parameters to scale with the recoil energy according

to M2 = ωM (n+p
′) = const. and s0 = ωs (n+p

′) = const. We observe that the resulting

energy dependence is just between a 1/(n+p
′) and a 1/(n+p

′)2 fall off. We also note that

the difference between the energy dependence of the tree-level and the NLO result is tiny.

We have also studied the stability criteria of the sum rule as a function of (n+p
′) and found

that the ωM dependence is not changed very much, while the continuum pollution is even

decreasing with smaller values of (n+p
′). We therefore consider the predictions for the

energy dependence of the soft form factor ξ̂‖ to be rather solid.

4.2.2 mQ dependence

The scaling of the soft form factor with the heavy-quark mass is another interesting issue.

From the theoretical side one is interested in the competition between the soft Feynman

mechanism for intermediate values of mQ and the Sudakov supression in the asymptotic

limit mQ → ∞. Phenomenologically, the heavy-quark mass scaling could be exploited to

get a rough estimate for D-meson decays at large recoil by extrapolation from the B-meson

case. In figure 4(b) we study the mQ dependence of the normalized soft form factor at

maximal recoil (n+p
′) = mQ,

R‖(mQ) ≡ mQ

mB

fB(µ)

fQ(µ)

ξ̂‖(Emax)|mQ

ξ̂‖(Emax)|mB

, (4.6)

where the factorization scale is kept fixed at µ = 1.0 GeV, and the pre-factors take into

account the “trivial” mQ dependence. Again, the sum rule parameters are scaled such that

M2 = ωM mQ = const. and s0 = ωsmQ = const.

For values mQ < mb, the situation is analogous to the energy dependence (n+p
′ <

mB) discussed above, i.e. an extrapolation of the sum rule to smaller heavy quark masses

seems to be justified. However, the 1/mQ power corrections become, of course, even more
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Figure 5: (a) The soft form factor ξ⊥ at n+p
′ = mB and µ = 1.0GeV as a function of the

Borel parameter for three different values of the threshold parameters (solid line: ωs = 0.25GeV,

short-dashed line: ωs = 0.2GeV, long-dashed line: ωs = 0.3GeV). (b) The same quantity using the

modified sum rule (4.8).

important in that case (see also the discussion in [26]). On the other hand, for larger values

of mQ, the sum rule predictions becomes more and more unstable. This manifests itself in:

(i) a huge difference between the tree-level and the NLO result in the limit mQ → ∞, (ii) an

increased sensitivity to the sum rule parameters, (iii) an increased continuum pollution. In

particular, the very heavy quark limit mQ → ∞ for ξ̂‖ does not exist anymore beyond the

tree-level approximation, which can be traced back to the non-factorizable large logarithms

discussed in section 2.2.2. However, one has to keep in mind that only the product of the

soft form factor ξ̂‖(n+p
′, µ) and the matching coefficient CI

i (µ, n+p
′) between the QCD and

the SCET current contributes to the physical form factor in (1.1), and CI
i (µ,mQ) vanishes

in the limit mQ → ∞ (for fixed values of µ) due to the exponentiation of Sudakov logs [7].

4.3 Soft form factor for transverse vector mesons

The analysis of the form factors for B-decays into transversely polarized vector mesons is

similar as for longitudinal ones. The main difference is the smaller value for the default

threshold parameter ωs, due to the contribution of the b1(1235) to the correlator Π⊥. The

numerical result for the form factor ξ⊥ is shown in figure 5(a). Considering the stability of

the sum-rule result for ξ⊥ and the smallness of the continuum contribution, we find that

also the Borel parameter ωM has to be chosen in a range smaller than in the longitudinal

case, 0.1 < ωM < 0.8 GeV, with the central value taken as ωM = 0.3 GeV. Our result for

the soft transverse B → ρ form factor follows as

ξ⊥(n+p
′ = mB , µ = 1.0 GeV) = 0.26+0.03

−0.04|ωs

+0.01
−0.01|ωM

± 0.03|ω0
± 0.04|fB

(4.7)

Adding errors in quadrature amounts to ξ⊥(n+p
′ = mB, µ = 1.0 GeV) = 0.26+0.06

−0.07, i.e. in

total a ∼ 25% uncertainty with similar contributions from the different input parameters.

The tree-level result for the same input parameters gives ξ⊥ = 0.39. (For comparison,

in [24] the value ξ⊥(µ = 1.5 GeV) = 0.27± 0.05 has been derived from the traditional sum

rule approach in [22].)
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Figure 6: (a) Energy dependence of the soft form factor ξ⊥(n+p
′)/ξ⊥(mB). The grey band illus-

trates the range between a pure 1/(n+p
′)2 and a pure 1/(n+p

′) behaviour. (b) The mQ dependence

of the soft form factor R⊥(mQ), (defined analogously as (4.6)), as a function of 1/mQ. The solid

line denotes the NLO result, the dashed line the LO result.

If we divide the sum rule for ξ⊥ by the corresponding sum rule for f⊥ρ [21],

4π2 (f⊥ρ )2 e−m2
ρ/M2 ≃

∫ s0

0
ds e−s/M2

(

1 +
αs

π

[

7

9
+

2

3
ln

s

µ2

])

,

we obtain the modified prediction

ξ⊥(n+p
′, µ) =

4π2f⊥ρ fBmB

ωs
∫

0

dω′ e−ω′/ωM φeff
⊥ (ω′, n+p

′, µ)

(n+p′)2
ωs
∫

0

dω′ e−ω′/ωM

(

1 + αs

π

(

7
9 + 2

3 ln ω′n+p′

µ2

))

, (4.8)

where we also took into account the explicit µ dependence arising from the O(αs) correction

to the tensor current. Again, the modified sum rule reduces the parametric uncertainties

related to ωs and ωM , but induces an unknown systematic error due to the assumed

correlation between the two sum rules,

ξ⊥(n+p
′ = mB, µ = 1.0 GeV) = 0.20+0.00

−0.00|ωs

+0.01
−0.03|ωM

± 0.02|ω0
± 0.03|fB

± (?)syst.

Notice that the central value obtained from the modified sum rule is significantly smaller

than the one from the original sum rule (and only marginally consistent within the uncer-

tainties). In figure 6 we show again the energy and heavy-mass dependence. Compared

to the longitudinal case, the energy dependence of ξ⊥ is somewhat closer to a 1/(n+p
′)2

fall-off. Also the heavy-quark mass dependence is slightly different.

4.4 Soft form factor for pseudoscalar mesons

For completeness, we also show the results for the soft B → π form factor, where the sum

rule takes the same form as for longitudinally polarized vector mesons (with m2
π ≈ 0),

ξπ(n+p
′, µ) =

fBmB

fπ (n+p′)

ωs
∫

0

dω′ e−ω′/ωM φeff
‖ (ω′, n+p

′, µ) . (4.9)
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Figure 7: (a) The soft form factor ξπ at n+p
′ = mB and µ = 1.0GeV as a function of the Borel

parameter for three different values of the threshold parameters (solid line: ωs = 0.2GeV, short-

dashed line: ωs = 0.25GeV, long-dashed line: ωs = 0.15GeV). (b) The same quantity using the

modified sum rule (4.11).

The choice for the threshold parameter s0 is somewhat more difficult in this case, since the

axial-vector current, used to interpolate the pion, is expected to receive sizeable contribu-

tions from multi-pion channels. Typical values for s0 used in sum rules for, say, the pion

decay constant are thus rather low and lie in the range 0.7 − 1.0 GeV2, corresponding to

ωs = 0.15 − 0.20 GeV. On the other hand, one might argue that the Feynman mechanism

for the soft B → X form factor is dominant for single-particle states X, while multi-particle

decays B → πππ etc. should be suppressed. In this case, one would expect values of s0 in

the B → π sum rule close to the first axial-vector resonance. In the following, we choose

a rather conservative range ωs = {0.15, 0.2, 0.25} GeV (in accordance with our previous

work [5]). Consequently, our result for ξπ will have a rather large uncertainty from the

variation of s0.

As for the Borel parameter, we again consider the stability of ξπ with respect to

variations of ωM and the amount of continuum pollution within the given range for ωs.

From D < 25% and R > 50% we infer 0.3 GeV < ωM < 0.7 GeV with the central value

chosen as ωM = 0.45 GeV. Notice that the allowed range for ωM is somewhat smaller than

in the vector meson case, which is due to the rather small values of s0. With even smaller

values of s0 (like e.g. the ones chosen in [27]), the criteria D < 25% and R > 50% could not

be simultaneously fulfilled anymore. Moreover, for too small values of ωs the convergence

of the perturbative series for the sum rule is bad, since the αs corrections are enhanced

by large logarithms lnωs/ω0 (see the discussion above). This again could be taken as an

indication that the considered lower values for s0 are less realistic.

In any case, our choice for the variation of the sum-rule parameters implies the following

estimate for ξπ at maximal recoil,

ξπ(n+p
′ = mB , µ = 1.0 GeV) = 0.25+0.05

−0.06|ωs

+0.02
−0.03|ωM

+0.03
−0.02|ω0

± 0.04|fB
. (4.10)

Adding errors in quadrature amounts to ξπ(n+p
′ = mB, µ = 1.0 GeV) = 0.25+0.07

−0.08, i.e. in

total a ∼ 30% uncertainty with the largest contributions coming from the decay constant
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Figure 8: (a) Energy dependence of the soft form factor ξπ(n+p
′)/ξπ(mB). The grey band illus-

trates the range between a pure 1/(n+p
′)2 and a pure 1/(n+p

′) behaviour. (b) The mQ dependence

of the soft form factor Rπ(mQ), (defined analogously as (4.6)), as a function of 1/mQ. The solid

line denotes the NLO result, the dashed line the LO result.

and the threshold parameter. (Again, we quote the corresponding tree-level result, ξπ =

0.32, for comparison).

The modified sum rule is obtained by dividing the sum rule for fπ,

ξπ(n+p
′, µ) ≃

4π2fπfBmB

ωs
∫

0

dω′ e−ω′/ωM φeff
‖ (ω′, n+p

′, µ)

(n+p′)2
ωs
∫

0

dω′ e−ω′/ωM

. (4.11)

Numerically, we obtain

ξπ(n+p
′ = mB, µ = 1.0 GeV) = 0.20+0.00

−0.00|ωs

+0.00
−0.00|ωM

± 0.02|ω0
± 0.03|fB

± (?)|syst. .

In figure 8 we show the energy and heavy-quark mass dependence of ξπ which is similar

to that of ξ⊥.

4.5 Dependence on the shape of φ−B(ω)

So far, in our error treatment, we have varied the parameter ω0 = 1/φ−B(0) in a conservative

range in order to estimate the uncertainties related to the B-meson LCDA. It should be

stressed, however, that our result also depends on the shape of φ−B(ω) in an essential way.

To illustrate this effect, we consider two alternative parametrizations for φ−B(ω)

1: φ−B(ω) =
1

ω0
exp

[

−
(

ω

ω1

)2
]

, ω1 =
2ω0√
π

; (4.12)

2: φ−B(ω) =
1

ω0

(

1 −
√

(

2 − ω

ω2

)

ω

ω2

)

θ(ω2 − ω) , ω2 =
4ω0

4 − π
. (4.13)

Both models have the same value at ω = 0 as our default model (4.1) and are normalized

to unity (the radiative tail [19] of φ−B(ω) is unimportant for our considerations, because
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Figure 9: (a) Three models for φ−B(ω). Solid line: default model (4.1), short-dashed line (4.12),

long-dashed line (4.13). (b) The resulting prediction for ξ̂‖(mB) as a function of the Borel parameter

(ωs = 0.4 GeV, µ = 1 GeV).

the sum rule focuses on small values of ω). But the derivative at ω = 0 takes extreme (but

physically not excluded) values 0 and ∞, respectively. In figure 9 we compare the three

models for φ−B as well as the resulting soft form factor ξ̂‖ at maximal recoil.

We observe that the effects on the soft form factor are quite sizeable, ranging from

about -10% to +25% variations. In order to reduce the associated uncertainty, one clearly

needs additional qualitative and quantitative information on the LCDA φ−B(ω, µ). In any

case, we have to conclude that the sum rule for the soft B → π form factor alone cannot

be used to put stringent constraints on φ−B(0).6

4.6 Predictions for form factor ratios

As discussed already in our first paper [5], the numerical predictions for individual form

factors are quite sensitive to the hadronic input parameters related to the B-meson dis-

tribution amplitude and the Borel and threshold parameters. Certainly, part of these

uncertainties should cancel in ratios of form factors. In the following, we discuss two kind

of ratios: First, we consider ratios of soft form factors for B → π(K) and B → ρ(K∗) tran-

sitions. Second, we consider the corrections to the symmetry relations in the large-energy

limit [10], making use of the sum-rule prediction for the factorizable corrections.

4.6.1 Ratios of soft form factors

It is convenient to normalize the soft form factors to the corresponding decay constant and

consider the ratios

(ξπ/fπ) : (ξ̂‖ρ/f
‖
ρ ) and (ξ⊥ρ /f

⊥
ρ ) : (ξ̂‖ρ/f

‖
ρ ) .

In table 1 we present the numerical values obtained from our predictions for the individual

form factors at µ = 1.0 GeV, obtained in the previous sections. The quoted uncertainties

6In [26] independent information on the soft B → π form factor was used to determine the 1/ω moment

λB of the LCDA φ+

B(ω), by means of the approximate WW relation between φ−
B(0) and λB (see appendix B).

In view of the large dependence on the exact shape of φ−
B(ω,µ), such a procedure appears questionable to

us, at least, the related uncertainty seems to be significantly underestimated in [26].
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ratio: (ξπ/fπ) : (ξ̂
‖
ρ/f

‖
ρ ) (ξ⊥ρ /f

⊥
ρ ) : (ξ̂

‖
ρ/f

‖
ρ )

original sum rule 1.18+0.37
−0.32 1.02+0.28

−0.21

modified sum rule 1.05+0.06
−0.04 ± (?)syst. 0.87+0.06

−0.12 ± (?)syst.

Table 1: Ratios of normalized soft form factors for original and modified sum rules (see text).

The errors are obtained by varying the sum-rule parameters (independently for every meson) and

ω0, added in quadrature. For the original sum rule the errors are dominated by the sum rule

parameters. For the modified sum rule the errors for the form factor ratios are dominated by the

systematic error related to the assumed correlation between the sum rules for the soft form factor

and for the decay constants, respectively.

are obtained by varying independently the sum rule parameters for the two considered

form factors, together with the ω0 dependence (the dependence on fB drops out). Using

the original sum rules (2.21), (2.22) with (2.40), the so-obtained uncertainty is dominated

by the sum-rule parameters and amounts to about 30%.

Using, on the other hand, the modified sum rules (4.5), (4.8), (4.11) (i.e. assuming a

naive correlation between sum rule parameters for soft form factors and decay constants),

one gets very stable result close to one, i.e. to the simple approximate relations

ξP/fP ≃ ξ̂
‖
V /f

‖
V ≃ ξ⊥V /f

⊥
V (4.14)

which hold in this case, with a parametric uncertainty of about 10-15%. As already said,

this error does not include a systematic uncertainty which cannot be estimated in a model-

independent way.

SU(3) flavour symmetry corrections: the approximate relations (4.14) can directly

be generalized to B → K and B → K∗ form factors, yielding an estimate for the SU(3)

ratios

ξK/ξπ ≃ fK/fπ and ξ
‖,⊥
K∗ /ξ

‖,⊥
ρ ≃ f

‖,⊥
K∗ /f

‖,⊥
ρ . (4.15)

Notice that the latter ratio is of particular importance for the extraction of the CKM

parameter |Vts/Vtd| from the ratio of the B → K∗γ and B → ργ branching fractions [28,

29, 24, 30]. The central values for the SU(3) ratios,

ξ⊥K∗/ξ⊥ρ ≈ 1.1 − 1.2

etc., are thus in line with the naive expectations. However, it is to be stressed that the

theoretical uncertainty, to be assigned to the form-factor ratios, depends very strongly on

the assumptions about the sum-rule parameters. Of course, we expect a certain correlation

between the values for s0 and ωM in different sum rules. The way how to quantify these

correlations (and thus decreasing the uncertainties) appears to us more controversial.
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Figure 10: (a) ∆F‖ from (3.22 — light gray band) or (3.24 — dark gray band) normalized to the

QCDF result (3.25) as a function of ωM for ωs ∈ [0.35, 0.45]GeV and µ = 1.5GeV. (b) The same

for ∆F⊥ with ωs ∈ [0.2, 0.3]GeV.
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Figure 11: ∆Fπ from (3.22 — light gray band) or (3.24 — dark grey band) normalized to the

QCDF result (3.25) as a function of ωM for ωs ∈ [0.15, 0.25]GeV and µ = 1.5GeV.

4.6.2 Corrections to symmetry relations

In figures 10 and 11 we present a quantitative study of the factorizable form-factor contri-

butions, parametrized by the quantities

∆F‖ , ∆F⊥ , ∆Fπ .

We find it convenient to normalize to the QCD-factorization result (3.25) and compare the

original sum rule (3.22) and the modified one (3.24). The threshold parameters ωs for the

three cases are varied within the same ranges we used for the soft form factor analysis, the

factorization scale is chosen as µ = 1.5 GeV, and the variation with the Borel parameter

ωM is plotted. The following observations can be made:

• The modified sum rule shows a rather mild ωM dependence, and is typically 15-25%

smaller than the QCD factorization result (with asymptotic light-meson DA).

• The original sum rule shows a larger ωM dependence, and typically lies closer to or

even above the QCD factorization result.
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• In the case of transverse vector mesons, we observe a rather large deviation between

the original sum rule (3.22) and the modified one (3.24). This discrepancy has also

been seen in the soft form factor case.

In any case, the sum rule and the QCDF result are in qualitative agreement. In particular,

in the sum-rule approach we find no potential source of anomalous enhancement of the ∆Fi

as it is sometimes required in phenomenological fits (see, for instance, [31] and references

therein). For a more precise quantitative statement, we would also have to consider α2
s

contributions to the correlation function Π1, as well as include the αs and 1/M2 corrections

in the sum rules for the decay constants, which is beyond the scope of this work.

4.7 Comparison with other work

A study of B → π(K) and B → ρ(K∗) form factors in the framework of light-cone sum

rules involving the B-meson distribution amplitudes also appeared in [32]. The authors

use the same set-up with the B-meson treated as an on-shell state in the heavy-mass limit

of QCD (which at tree-level coincides with HQET), and the light mesons interpolated

by appropriate currents. The correlation functions are calculated only at tree level, but

contributions from 3-particle Fock states in the B-meson (which have been neglected in our

analysis) are taken into account. The tree-level result for 2-particle contributions to the

sum rule coincides with ours for decays into light pseudoscalars and longitudinally polarized

vector mesons. In case of transversely polarized vector mesons we used an interpolating

tensor current, while the authors of [32] used a vector current, and naturally the results

for the corresponding sum rules look different. As discussed above, a disadvantage of the

tensor current is the “pollution” by the contribution of a near-lying axial-vector resonance,

which is avoided by taking the vector current in [32]. On the other hand, the correlation

function with the tensor current is more “natural” from the SCET point of view, since the

vector-current correlator turns out to be Λ/mb-suppressed in the transverse case. Therefore

— in contrast to [32] — our sum rule for transversely polarized vector mesons does not

receive leading contributions from the 3-particle Fock states at tree-level and takes the same

form as in the longitudinal or pseudoscalar case. As a consequence, the leading dependence

on the B-meson distribution amplitude drops out in the form-factor ratios considered in

table 1.

Certainly, it will be desirable to combine the radiative corrections with the 3-particle

contributions to get a more reliable error estimate for the physical B → M form factors.

This includes both, the elimination of the scale ambiguity from φ−B(ω, µ) in the tree-level

result through αs corrections to SCET correlation functions, and the effect of Λ/mb cor-

rections from sub-leading currents and interactions in the SCET Lagrangian. These issues

will be left for future work.

5. Summary

In this paper we have studied light-cone sum rules for heavy-to-light form factors within

the framework of soft-collinear effective theory (SCET), generalizing our results for the

B → π form factors in [5] to the cases of decays into light vector mesons.
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The conceptual advantage of our formalism — compared to the more traditional light-

cone sum rules in QCD (see e.g. [22, 33 – 35]) — is a clear separation of factorizable (”soft”)

and non-factorizable (”hard”) contributions, on the basis of a systematic expansion in

inverse powers of the b-quark mass, already on the level of the correlation functions. This

is particularly useful to make contact to the QCD factorization approach, both on the

qualitative and on the quantitative level. In the SCET correlation functions, involving

interpolating currents for the light mesons under consideration, the hard-collinear dynamics

is factorized from the soft dynamics. The latter is described by non-perturbative light-cone

wave functions for the B meson. This factorization has been explicitly verified to order

αs accuracy (neglecting 3-particle LCDAs), making use of a new result for the anomalous

dimension kernel γ−(ω, ω′) obtained in [14]. The hard dynamics from scales of order mb

is already integrated out, and appears in matching coefficients of the decay currents in

SCET.

Sum rules for the heavy-to-light form factors are, as usual, obtained from a dispersive

analysis of the correlation function, introducing non-perturbative parameters associated to

the continuum threshold and the Borel transformation. Besides the light-cone distribution

amplitude of the B-meson itself, these parameters represent the main source of theoret-

ical (systematic) uncertainties in our numerical predictions for the form factors. In this

context, it is important to realize the different dynamical nature of factorizable and non-

factorizable form factor contributions, which also reflects itself in the respective sum rules.

Considering the sum rule for the factorizable form factor (3.22) in the heavy-quark mass

limit, the dependence on the sum-rule parameters factorizes from the soft convolution inte-

gral involving the B-meson distribution amplitude. In this case, the sum-rule parameters

can be viewed as universal properties of the spectrum of the interpolating current, and

by comparing with the sum rule for the meson decay constants, one formally recovers the

QCD factorization result.

In contrast, the analogous limit for the non-factorizable form factor contributions (2.40)

does not exist beyond tree level, and the responsible non-factorizable logarithmic depen-

dence on the threshold parameter has the same physical origin as the endpoint divergences

observed in the standard QCD factorization approach. As a consequence, the sum rule

parameters in (2.40) are to be considered as independent non-perturbative input, specific

to the soft (i.e. endpoint-dominated) dynamics. (In terms of the interpolating currents in

SCET, see (2.9) and (2.10), the factorizable terms probe the first terms with two hard-

collinear fields, whereas the non-factorizable terms probe the terms with one hard-collinear

and one soft field.) Following a conservative treatment of theoretical systematics, our quan-

titative estimates for the soft form factor contributions thus leads to rather large uncertain-

ties, where the accepted ranges for the sum rule parameters are constrained by requiring

sufficient stability under variations of the Borel parameter, and a sufficiently small contin-

uum pollution. The resulting predictions for the soft form factors are in general agreement

with the expectations from QCD light-cone sum rules and QCD factorization. The NLO

corrections, calculated in this paper, are numerically significant and can reduce the tree-

level estimates by up to 30%. Concerning the energy-dependence of the soft form factors,

we find a significant deviation of the simple 1/E2 behaviour, in particular for longitudinally
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polarized vector mesons.

The uncertainties related to the sum-rule parameters and the B-meson distribution

amplitudes can be somewhat reduced by considering form factor ratios. Still, a proper error

estimate requires to make certain assumptions about correlations between the threshold

and Borel parameters in different sum rules. In the simplest case, we find that to first

approximation the soft form factors scale with the respective light meson’s decay constant.
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A. Calculation of the imaginary part at one-loop

The imaginary part from diagrams (a1-a4), after MS renormalization, determines the one-

loop contribution to the jet function in inclusive b→ u decays [11, 12],

1

π
Im[Πa

‖,⊥] =
αsCF

4π
fBmB

∞
∫

0

dω φ−B(ω) (A.1)

×
{

(7 − π2) δ(u) − 3

(

1

u

)[µ2/n+p′]

∗

+ 4

(

ln[u(n+p
′)/µ2]

u

)[µ2/n+p′]

∗

}

,

where u = (n−p − ω + iη), and the modified plus-distributions are defined through (see

e.g. [36]),

M
∫

≤0

duF (u)

(

1

u

)[m]

∗

=

M
∫

0

du
F (u) − F (0)

u
+ F (0) ln

(

M

m

)

, (A.2)

M
∫

≤0

duF (u)

(

ln(u/m)

u

)[m]

∗

=

M
∫

0

du
F (u) − F (0)

u
ln
u

m
+
F (0)

2
ln2

(

M

m

)

. (A.3)

Using (2.13), taking into account the continuum subtraction ω′ < ωs, and performing the

ω integration in (A.1), this contributes to the sum rule as

B̂[Πa
‖,⊥](ωM ) − cont. =

fBmB

ωM

αsCF

4π

ωs
∫

0

dω′ e−ω′/ωM (A.4)
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×
{(

7 − π2 + 3 ln

[

µ2

ω′(n+p′)

]

+ 2 ln2

[

µ2

ω′(n+p′)

])

φ−B(ω′)

+

ω′
∫

0

dω

(

4 ln

[

µ2

(ω′ − ω)(n+p′)

]

+ 3

)

φ−B(ω′) − φ−B(ω)

ω′ − ω







For convenience, we summarize the results for the imaginary part from the basic struc-

tures appearing in the one-loop correlation function:

1

π
Im

∞
∫

0

dω

ω − ω′
L(µ)φ−B(ω) =

ω′
∫

0

dω
φ−B(ω) − φ−B(ω′)

ω − ω′
+ L0 φ

−
B(ω′) , (A.5)

1

π
Im

∞
∫

0

dω

ω − ω′
[L(µ)]2 φ−B(ω) =

ω′
∫

0

dω (2L0 − 2L1)
φ−B(ω) − φ−B(ω′)

ω − ω′

+

(

L2
0 −

π2

3

)

φ−B(ω′) , (A.6)

1

π
Im

∞
∫

0

dω

ω
L1 φ

−
B(ω) = −

∞
∫

ω′

dω ln
ω

ω′

(

d

dω
φ−B(ω)

)

, (A.7)

1

π
Im

∞
∫

0

dω

ω − ω′
L1 φ

−
B(ω) = −

∞
∫

ω′

dω ln

[

ω

ω′
− 1

](

d

dω
φ−B(ω)

)

, (A.8)

1

π
Im

∞
∫

0

dω

ω − ω′
[L1]

2 φ−B(ω) = −
∞
∫

ω′

dω ln2

[

ω

ω′
− 1

](

d

dω
φ−B(ω)

)

− π2

3
φ−B(ω′) ,

(A.9)

and

1

π
Im

∞
∫

0

dω

ω − ω′
L1 L(µ)φ−B(ω) =

ω′
∫

0

dω L1
φ−B(ω) − φ−B(ω′)

ω − ω′
(A.10)

−
∞
∫

ω′

dω

(

L0 ln

[

ω

ω′
− 1

]

− 1

2
ln2

[

ω

ω′
− 1

]

− π2

6

)(

d

dω
φ−B(ω)

)

.

where

L(µ) = ln

[

− µ2

(ω′ − ω)n+p

]

, L1 = ln
[

1 − ω

ω′

]

, L0 = ln

[

µ2

ω′ n+p

]

,

and Im[w] < 0. Notice that the imaginary part resulting from the diagrams (b1+b2) also

has support for ω > ω′.
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B. B-meson LCDAs in D 6= 4 dimensions

We follow the derivation as given in the appendix of [1]. Starting point is the general

decomposition of the two-particle B-meson matrix element [9]

〈0|q̄β(z)P (z, 0) bα(0)|B̄(p)〉 = − ifBM

4

[

1+v/

2

{

2φ̃+
B(t, z2)+

φ̃−B(t, z2) − φ̃+
B(t, z2)

t
z/

}

γ5

]

αβ

,

(B.1)

where v · z = t and, for the moment, we allowed the separation between the quark fields to

be off the light-cone, z2 6= 0. P (z, 0) is the usual path-ordered exponential which, however,

will be neglected in the derivation of the Wandzura-Wilczek (WW) relation.

The equation of motion for the light spectator quark relates φ̃−B(l+) to φ̃+
B(l+) in the

approximation that the three-particle amplitudes are set to zero (the effect of three-particle

LCDAs in D 6= 4 is discussed in [14]). We require the right-hand side of eq. (B.1) to

vanish after application of [∂/z2 ]βγ (which is true only if the three-particle Fock-state bq̄g is

neglected), and φ̃B
±(t, z2) not to vanish as z2 → 0. Writing

∂µ
z = vµ ∂t + 2zµ ∂z2 ,

we obtain two constraints from the two independent Dirac structures 1+v/
2 γ5 and 1+v/

2 γ5z/

∂tφ̃
−
B +

D − 2

2t
(φ̃−B − φ̃+

B)
∣

∣

∣

z2=0
= 0 (B.2)

−∂t(φ̃
−
B − φ̃+

B) + 4t ∂z2 φ̃+
B +

1

t
(φ̃−B − φ̃+

B)
∣

∣

∣

z2=0
= 0 . (B.3)

The first relation modifies the WW relation as quoted in (110) of [1]. Inserting the t-

derivative of the first equation into the second one, the latter can be simplified as

∂φ̃+
B

∂z2
+

1

2(D − 2)

∂2φ̃−B
∂t2

∣

∣

∣

z2=0
= 0 , (B.4)

which modifies equation (111) in [1]. The momentum-space representation of (B.2) now

reads
∫ l+

0
dη
(

φ−B(η) − φ+
B(η)

)

=
2

D − 2
l+φ

−
B(l+) or φ+

B(l+) = − 2

D − 2
l+ φ

′ −
B (l+),

(B.5)

which is solved by

φ−B(l+) =
D − 2

2

1
∫

0

dη

η
φ+

B(l+/η). (B.6)

The factor 2/(D−2) also appears in the momentum-space projector for the B-meson wave

function in the WW approximation

MB
βα = − ifBM

4

[

1 + v/

2

{

φ+
B(ω)n/+ + φ−B(ω)n/− − 2

D − 2
ωφ−B(ω) γµ

⊥

∂

∂l⊥µ

}

γ5

]

αβ

. (B.7)

where the transverse Dirac matrices γ⊥ obey γµ
⊥γ

⊥
µ = D − 2.
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